

CEOI 2014 Day 1 Task: question Language: EN

Solution

Partial solution (27 points)

Let the binary representations of *x* and *y* be different at the *i*-th digit (from the right). Transmit h = 2i if the *i*-th digit of *x* is 0 and h = 2i - 1 if the *i*-th digit of *x* is 1. B should answer "yes" iff the $\left|\frac{h+1}{2}\right|$ -th digit of *f* is $h \mod 2$.

Partial solution (60 points)

Let *h* be the smallest *i* such that the *i*-th digit of *x* is 0 and the *i*-th digit of *y* is 1 if such a number *i* exists. Otherwise, the digit sum d_x of *x* is obviously larger than the digit sum d_y of *y*. Then, you can transmit $\lceil \log_2 N \rceil + i$ where *i* is any number such that the *i*-th digit of d_x is 1 and the *i*-th digit of d_y is 0.

If $h \leq \lceil \log_2 N \rceil$, B has to check whether the *h*-th digit of *q* is 0. Otherwise, he must check whether the $(h - \lceil \log_2 N \rceil)$ -th digit of the digit sum of *q* is 1.

Full solution

Let *K* be the maximum number *h* that A is allowed to shout over to B.

Assume A and B aggreed on some sets $M_i \subseteq \{1, ..., K\}$ for $1 \le i \le N$.

Let B answer "yes" if and only if $h \in M_q$. Then, A can simply shout any number $h \in M_x \setminus M_y$ over to B, provided that M_x is not a subset of M_y . Hence, this strategy works out if no set M_i is a subset of any other set M_j .

We can simply choose M_i to be pairwise distinct $\lfloor K/2 \rfloor$ -element subsets of $\{1, \ldots, K\}$.

Remark. This choice of the M_i is optimal, i.e., the problem is solvable if and only if $\binom{K}{\lfloor K/2 \rfloor} \ge N$ (cf. Sperner's theorem).