JENA 2014

Solution

Partial solution (27 points)

Let the binary representations of x and y be different at the i-th digit (from the right). Transmit $h=2 i$ if the i-th digit of x is 0 and $h=2 i-1$ if the i-th digit of x is 1 .
B should answer "yes" iff the $\left\lfloor\frac{h+1}{2}\right\rfloor$-th digit of f is $h \bmod 2$.

Partial solution (60 points)

Let h be the smallest i such that the i-th digit of x is 0 and the i-th digit of y is 1 if such a number i exists. Otherwise, the digit sum d_{x} of x is obviously larger than the digit sum d_{y} of y. Then, you can transmit $\left\lceil\log _{2} N\right\rceil+i$ where i is any number such that the i-th digit of d_{x} is 1 and the i-th digit of d_{y} is 0 .
If $h \leq\left\lceil\log _{2} N\right\rceil$, B has to check whether the h-th digit of q is 0 . Otherwise, he must check whether the $\left(h-\left\lceil\log _{2} N\right\rceil\right)$-th digit of the digit sum of q is 1 .

Full solution

Let K be the maximum number h that A is allowed to shout over to B .
Assume A and B aggreed on some sets $M_{i} \subseteq\{1, \ldots, K\}$ for $1 \leq i \leq N$.
Let B answer "yes" if and only if $h \in M_{q}$. Then, A can simply shout any number $h \in$ $M_{x} \backslash M_{y}$ over to B, provided that M_{x} is not a subset of M_{y}. Hence, this strategy works out if no set M_{i} is a subset of any other set M_{j}.
We can simply choose M_{i} to be pairwise distinct $\lfloor K / 2\rfloor$-element subsets of $\{1, \ldots, K\}$.
Remark. This choice of the M_{i} is optimal, i.e., the problem is solvable if and only if $\binom{K}{\lfloor K / 2\rfloor} \geq$ N (cf. Sperner's theorem).

