The Forest of Fangorn

Definition 1. A portal is a straight line connecting two trees. A point p is called allowed if
you can see all trees from it. A path is allowed (or valid), if all of its points are allowed. If a
point is not allowed, we call it forbidden, and likewise for paths.

The main point of our solution is, that for any camp we only need to check two paths. The
proof will consist of several steps.

Remark 2. If a is reachable from b (meaning there is a valid path connecting them), then this
is still possible if we restrict ourselves to piecewise linear paths that only bend on portals.

Proof. First note that the set of forbidden points is given as follows: for any pair (s, t) of
trees we have a “forbidden ray” going out of t with direction t — s (these are precisely the
points where you can’t see s because of t). Thus if we remove forbidden points and all the
portals, we get the plane with some lines removed, which splits into convex regions. Thus
any two points on portals bounding the same region can be connected by a straight line of
allowed points. O

The most important result is the following:

Lemma 3. If b is reachable from a4 and at least one of them lies on a portal, then the segment
ab is valid.

Proof. W.lo.g. assume that b lies on a portal and let v be a valid piecewise linear path
connecting a and b which has n bendpoints. We can restrict ourselves to the case n = 1: for
n = 0 there is nothing to show and the general case follows easily by induction.

Let c be the bend point and consider the triangle A formed by a, b, and
c. Assume that ab would be forbidden, i.e. there is a forbidden ray inter-
secting ab. Let I be the respective line. Since I would intersect one of the
other two sides, there must be a tree f inside A. Now take one tree u of
the portal which is not on the same side of ab as t. Then ut intersects ab
and thus another side of A. At this intersection point u is hidden by ¢ and
so it is forbidden, which contradicts the choice of 7. O

Fix a portal. If we remove all the forbidden points from this portal, it splits into a set S of
segments. Obviously, for any s € S either all points are reachable or none. Applying the
previous lemma, we see that a segment is reachable if and only if the midpoint is reachable
via a direct line.

Hence we can give an O(N®C)-algorithm, which scores 20 points, as follows: for any of
the O(N?) portals calculate all intersections with the O(N?) forbidden rays. This gives up
to O(N*) segments. Then for a fixed camp and any segment, check if we can reach the
midpoint from both the camp and Gimli via a direct line, which needs O(N?) intersection
checks per midpoint. Finally check the direct line from Gimli to the camp itself.

For any polygon P we denote by dP its border. The following result allows us to optimise
the above algorithm:




Remark 4. Let F denote the forest (as in the task statement) and let ' be the convex hull of
the trees. As above, let 2 and b be arbitrary points in F. If b lies on dF and is reachable from
a, then it is already reachable either via a direct line or via a piecewise linear path having
its only bendpoint on oT".

Proof. Let 7y be an allowed path from a to b that bends only on portals. If 7 intersects oI’
this follows as above. Otherwise, since b is not contained in the interior of I', the whole
path must lie outside I' and thus cannot intersect any portal. Hence, by construction, 7 is a
segment. ]

In O(N*) we can calculate all intersections between dI' and forbidden rays. By convexity,
any ray can intersect oI in at most 1 point, hence there are only O(N?) segments to consider.
Thus the obvious modification of the above algorithm has runtime O(N*C) which gets
another 20 points (10 points from the convex subtask).

If all trees lie on oI, then all forbidden points (except the trees) are outside I' and hence you
only need to look at midpoints of portals on dI. This gives an O(N3C)-algorithm which
scores 20 points, or when combined with the above solution, 50 points.

For 80 points you need the following observation:

Definition 5. Fix a tree . The forbidden rays beginning at t split the plane into different
regions exactly one of which contains Gimli’s original position. The two rays bounding this
region and their points are called strictly forbidden.

Remark 6. A path 7 beginning at Gimli’s original position is allowed if and only if it
contains no strictly forbidden points.

Proof. The “only if” part is trivial. Now let p be a forbidden point, that is not strictly
forbidden, and t the respective tree. Then by definition ¢y must cross one of the forbidden
rays beginning at ¢ in order to reach p, i.e. it must contain a strictly forbidden point. O

The forbidden rays can be easily found in O(N?). From this we can get an O(N2C)-solution
by applying the above procedure only to the strictly forbidden rays: all the midpoints
omitted are anyhow not reachable from Gimli.

For full score you can use the following final result:

Remark 7. Let a2 and b be points on (possibly distinct) portals, that are both reachable from
Gimli, and let c be an arbitrary point. Then the segment ac is allowed if and only if ab is
valid.

Proof. Note that you can get from a to b and vice versa (simply by composing the paths to
Gimli’s original position). Thus c is reachable from a iff it is reachable from b. So the claim
follows from Lemma 2. O

So we can solve the problem in O(N? + NC) as follows: calculate the forbidden rays as
above and then in O(N?) the reachable segments on dI'. Then for any camp c¢ check both
the direct line from Gimli’s original position to c and, if it exists, the direct line from an
arbitrary reachable midpoint to c.




Some further notes

The proof our main lemma only requires that there are trees on either side of ab. As you can
see from the practice task “surveyor” this holds if either a or b is contained in the convex
hull I'. Thus, we do not need the restriction that all the camps are located on dF: any point
inside I is reachable via a direct line and for Remark 4 we only require b to be outside I'.
Hence the above algorithm also works in general.

After O(N?) preprocessing time we only need to check for up to two points which camps
are reachable via a direct line. This could be also done in O((N + C)log(N + C)) by
sweeping over angles.

The following proposition offers an easier to implement solution.

Proposition 8. For any tree t, removing the strictly forbidden points (including t) splits
the plane into two parts, exactly one of which contains Gimli’s original position. Call this
region G;. Then a camp c is reachable from Gimli if and only if it is contained in G; for all
trees t.

Proof. Obviously, every point reachable from Gimli’s original position lies in the intersection
of all G;. It remains to show that the intersection of all regions G; is connected.

If the tree t lies inside the convex hull I' of the forest, the region G; is the intersection of
two half-planes (in particular convex). On the other hand, this need not be the case if t is a
corner of the convex hull. But if G; is non-convex, it is easy to see that G; at least contains
all other trees (cf. Figure 1).
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Fig. 1. Non-convex case: Fig. 2. u can’t be a tree since Fig. 3. Splitting G;: Blue: |
blue: G¢; orange: aregion  otherwise the line through ¢
containing all trees and u would split G;

We are now going to show that for any subset of the set of non-convex regions G; and
any set of half-planes through trees, the intersection of these non-convex regions and half-
planes is connected. This is obviously sufficient to prove the claim, as it implies that the
intersection of all regions G; is connected. We are going to use induction on the number
of non-convex regions we consider. The intersection of half-planes is convex and thus
connected, so we may assume that there is at least one such non-convex region G;. Let
] be the intersection of the half-planes and the other non-convex regions. By drawing a
picture, you can easily see that | N G; lies completely within a half-plane through the tree
t contained in G; or t is contained in (or on the border of) | (since t lies in all non-convex
regions G, and lines through trees cannot divide ¢ from both a and b, cf. Figure 2).
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In the first case, simply apply the induction hypothesis (replacing the non-convex region G;
by the half-plane through t). In the second case, split G; into two convex regions G; and G}
using a line through t. Both regions are the intersection of two half-planes through ¢, so by
induction the sets ] N G} and ] N G{ are both connected. Furthermore, f is contained in (or on
the border of) ] N G, and ] N G/. But that means that the union (JNG}) U (JNG/') =N G;
is connected (two points 2 € [N G; and b € ] N G} are connected via a point close to t, cf.
Figure 3). O

Note that this relies heavily on the structure of the G;’s and is false for arbitrary sets. For
example, you can take the sets A and B obtained by removing from the unit circle the points
(0,1) and (0, —1) respectively. Then both A and B contain paths from (—1,0) to (1,0) but
their intersection doesn’t.




